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We study the percolation problem on the Apollonian network model. The Apollonian networks display many

interesting properties commonly observed in real network systems, such as small-world behavior, scale-free
distribution, and a hierarchical structure. By taking advantage of the deterministic hierarchical construction of
these networks, we use the real-space renormalization-group technique to write exact iterative equations that
relate percolation network properties at different scales. More precisely, our results indicate that the percolation
probability and average mass of the percolating cluster approach the thermodynamic limit logarithmically. We
suggest that such ultraslow convergence might be a property of hierarchical networks. Since real complex

systems are certainly finite and very commonly hierarchical, we believe that taking into account finite-size
effects in real-network systems is of fundamental importance.
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I. INTRODUCTION

Complex networks describing real systems are organized
in a way that departs from the simple model of a random
graph. In their celebrated work, Watts and Strogatz [1]
showed for their small-world graphs that a structural param-
eter, called the cluster coefficient, measuring the formation
of groups of three connected neighbors, was much larger
than what would be expected in the random regime. It was
also observed that some real networks might have a large-
scale organization with the presence of communities [2].
Subsequently, these two properties, namely the global orga-
nization in communities and the local cluster coefficient,
have been brought together in self-similar hierarchical struc-
tures where the network is composed of groups within
groups [3]. In view of this novel topological concept, tech-
niques of analysis have been proposed to identify the hierar-
chical construction from the large set of data obtained from
real systems [4,5]. A structural organization governing the
network topology at all scales is bound to have profound
effects on dynamical processes that take place on networks.
Such effects are now being revealed by some recent studies
[6].

Percolation on complex networks can model a large num-
ber of processes in complex systems including, among oth-
ers, system failure [7] and spreading of epidemics [8]. In this
model, one assumes that the network has a fraction p of the
edges being present and a fraction 1—p of the edges being
removed. A surprising aspect of this problem is that in some
scale-free network models, global connectivity is kept for
any positive probability, p >0 [9]. Clearly, this result is only
valid in the limit of infinite networks. A natural question
therefore arises: How close are real networks from the ther-
modynamics limit? To answer this question, one needs to
develop a finite-size scaling theory for networks, and there
has been some effort in this direction [10,11]. However, not
much has been done to address this problem taking into ac-
count a hierarchical structure of the network.

Here we study the percolation problem on a hierarchical
model for complex networks, namely the Apollonian net-
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works. We will investigate two quantities in this problem.
The first is the probability of global connectivity, which we
define as the probability that two hubs in the networks re-
main connected after depreciation. We also calculate the
fraction of the network occupied by the percolating cluster
that connects the hubs. We use renormalization group to find
exact renormalization-group equations showing how these
quantities vary when we change the scale of the Apollonian
network. From this, we are able to show that, in the thermo-
dynamic limit, the critical point is p.=0. However, our scal-
ing relations indicate a very slow, logarithmic, approach to
this limit. We suggest that the knowledge of the properties at
the infinite size limit may not be representative of what one
should expect in real network systems, at least for the case of
hierarchical networks.

II. THE APOLLONIAN NETWORK MODEL

The Apollonian networks were inspired by the dense
packing of polydisperse spherical grains [12-16]. These net-
works have a clear geometrical description and their proper-
ties are related to the space occupied by the grains. In two-
dimensional space, the Apollonian network is a planar graph
that is at the same time small-world and scale-free. In higher
dimensions, the planarity is lost but the network properties
are similar. This limit has been associated to the network of
transition paths between local minima in high dimensional
rough energy landscapes [17]. Another interesting property
of the Apollonian network is that they are intrinsically hier-
archical. The way the nodes are connected at small scales
provides a possible model for the location of larger groups in
a network geometry. Therefore, the network is self-similar,
although it cannot be considered as a fractal [5], being rather
a pseudofractal [18].

Most of the geometrical properties of Apollonian net-
works are presented in Ref. [12]. For the sake of complete-
ness we include some of these properties here. The number
of nodes in an Apollonian network of nth generation is N
=3+(3"-1)/2. These networks exhibit a small world behav-
ior and are scale-free with an exponent y=1+In3/In2
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FIG. 1. (Color online) Pictorial representation of the iterative

procedure to construct an Apollonian network. (a) Three replicas of
the nth generation Apollonian network are merged to form the (n
+ 1)th network generation. The gray areas represent the nth genera-
tion networks to be merged. The hubs in the corner of previous
generation are fused to generate the three corner hubs and the cen-
tral hub of the following generation. After the merging, three new
connections are placed from the center to the corners of the (n
+ 1)th network generation. (b) An illustration of the procedure to go
from generation 1 to generation 2 of the Apollonian network. The
vertex of the same color in each of the three networks of generation
1 is merged into the following second generation. The edges shown
in teal are included in the second generation after merging the hub
nodes. (c) Three networks of second generation are merged into a
third-generation network. The resulting network is identical to the
Apollonian network with the exception of the three connections
linking the hubs in the corners. This detail has a negligible effect on
the results presented here.

~2.585. The cluster coefficient grows with the generation
saturating in a value C=~0.828.

To take advantage of the self-similar structure of the
Apollonian network, we use a convenient iterative construc-
tion procedure in which we obtain the (n+1)th generation
from the previous nth network generation. This procedure is
illustrated in Fig. 1. We start with three isolated sites in gen-
eration 0. At each step three identical replicas of the previous
generation networks are connected to each other by direct
fusion of hubs, with the central hub of the new generation
being merged from the three subnetworks of the previous
generation. Finally, three new bonds are added connecting
the central hub of the network to each of the hubs at the
corners. This procedure generates exactly the Apollonian net-
work, with the three connections linking the corner hubs
missing. If desired, these three bonds may be added by hand
at the end of the growth procedure. In any event, such a
small difference will have a negligible influence on the re-
sults presented here. From this procedure, we can find itera-
tive relations between the properties of the network at one
scale in terms of the smaller scales. In the case of a perfectly
self-similar system, such as Apollonian networks, this
renormalization-group approach should provide exact re-
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sults. Similar techniques have been applied before to solve
percolation of complex network models [19,20]. However, to
the best of our knowledge, these previous efforts were con-
sidered simple cases in which the self-similar parts of the
network are connected to the whole system at only two
points. Apollonian networks provide a different and more
realistic view, since real network communities normally have
multiple points of contact with the rest of the system.

III. PERCOLATION

The percolation model on Apollonian networks can be
described as follows. After the construction of the network
up to nth generation, a fraction of the bonds of the network is
removed. The probability of a bond to be retained is given by
p, while g=(1-p) is the probability of removal. For this
model, we calculate the probability P,(p) of having a cluster
connecting at least two of the hubs in the corners of the
network, as well as the fraction of the bonds M, (p) of such
cluster.

Following the iterative construction shown in Fig. 1, we
now introduce the renormalization procedure to solve the
percolation problem. After the depreciation of the network,
there are three possible ways in which the hubs in the corner
of the network can be connected to (or disconnected from)
each other. First we use the term Y network if the three hubs
are connected to each other, and we refer to My(n) and Y(n)
as the mass fraction and the probability of finding such a
network at generation n, respectively. The second possibility,
namely a V network, appears when two hubs of a subnetwork
are connected to each other while being disconnected from
the third hub. In this case, there are three possible choices for
a hub to be disconnected. By symmetry, all three have the
same probability V. Here the mass fraction of the cluster
connecting the two hubs is My(n), while the mass fraction of
the cluster connected to the third hub is M(n). Finally, the
third possibility is an S network, with all three hubs ending
up disconnected from each other with probability S. We call
M(n) the average mass fraction of the cluster connected to
the hubs. We can then write the following equation:

S=1-Y-3V. (1)

In terms of Y, V, and S, the probability P,(p) is simply given
by the sum P,(p)=Y+3V, that is, the total probability of at
least two corners of the network being connected.

The renormalization procedure consists of using the prob-
abilities Y, V, S, and p along with the masses My, My, M,
and Mg to obtain expressions for their counterparts in the
(n+1)th generation network, say Y', V', ', My, My, M,
and M g Exact expressions for Y', V', S” can be obtained in
a straightforward, albeit tedious, manner (see the Appendix
for details). Here we only quote the final results,

Y' =p’Y3+3pqY, +3pq’Y | + @Y,
V' =p*qVy+pg*Vi+ ¢V,

S'=1-Y' -3V, (2)

where
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FIG. 2. (Color online) Renormalization for p=0.1. (a) Evolution of the percolation probabilities ¥, V, and S. We start with the values
Y=V=0 and S=1 at the zeroth generation and iterate Eqs. (2) until the threshold ¥ = 1-1073 is reached, which is the adopted convergence
criterion (a total of 11 iterations). With this fraction p of bonds present, the probability y for connecting all three corners of the network
becomes non-negligible after the sixth iteration. At this point, the mass fraction of the clusters reaches the limiting value of the renormal-
ization process, as can be seen in (b), where we show the evolution for the mass fractions My, My, My, and Mg. We start with the values
My=My=M;=Ms=0 at the zeroth generation and iterate Egs. (2) and (A9). The point n=0 has been omitted from (b).

Y,=(Y+2V)(2-Y-2V),

Y, =Y +4V(Y +2V) +(S-V)(Y +2V)?,
Yo=Y*(3-2Y)+ 12YV(2V +S) + 3VA(5V +Y),
V,=(V+S5)?,

V=Y +7V)(V+S)?,

3)

where Y5 is the contribution for Y’ from situations in which
all three of the extra bonds added at the end of the alternate
construction procedure remain present after the decimation,
Y, and V, are the contributions when two of them remain

Vo= (Y +V)(V+5)*+ VX3V +5S),

Probability

30 40
(a) Generation, n

present while the third one is removed, and so forth. Equa-
tions (2) can be iterated for fixed values of p. Except for p
=0, this iteration will converge to the only stable fixed point,
namely Y=1 and V=S=0. In other words, we obtain a per-
colation probability P.(p)=1 unless p=0, in which case
P..(0)=0, that is, since our lattice is decomposed randomly,
the hubs remain (indirectly) connected in the thermodynamic
limit for all positive values of p. This means that the critical
point of the percolation transition in Apollonian networks
goes to zero, similar to what happens in other scale-free net-
works [9]. However, as we will demonstrate later, finite-size
effects are highly relevant in this system and the behavior in
the thermodynamic limit is not representative of what one
should expect for networks of sensible scales.

In a similar way as in Egs. (2) and (3), exact iterative
equations can be derived for the mass fractions My, My, My,
and Mg (see the Appendix). By numerically iterating Eq.
(A9) along with Eq. (2), we obtain results for the mass frac-
tions and percolation probabilities at different network gen-
erations. These results are shown in Figs. 2 and 3 for p
=0.1 and 0.01, respectively.

1077 10 20 30 40 50 60
(b) Generation, n

FIG. 3. (Color online) Renormalization for p=0.01. (a) Evolution of the percolation probabilities ¥, V, and S, obtained by iterating Eq.

(2) until the convergence criterion ¥Y=1-10"2 is met (60 iterations). With this fraction p of bonds, the probability ¥ only becomes
non-negligible after about 55 iterations [compare with Fig. 2(a)]. In (b) we show the evolution for the mass fractions My, My, M, and My,
obtained by iterating Eqgs. (A9) and (2). Similarly to what can also be seen in Fig. 2(b), these mass fractions converge to a limiting value
(My~ 10719 once the probability ¥ becomes non-negligible.
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FIG. 4. (Color online) The approach to the thermodynamic
limit. The lines correspond to the probability of global connectivity,
P,=3V+Y, obtained by numerically iterating Egs. (2) and (3). In
the main panel we show the scaled probability w=P,/p as a func-
tion of the scaled generation pn. One can see that as p—0, the
curves approach the theoretical prediction, Eq. (6). In the inset, we
show the original (unscaled) curves.

IV. CRITICAL BEHAVIOR AND FINITE-SIZE SCALING

The results from Figs. 2 and 3 clearly indicate the impor-
tance of finite-size effects. In the thermodynamic limit, any
probability of occupation p larger than zero should result in a
state of global connectivity. However, for the relatively small
value of p=0.1 this state is not reached before the 6th gen-
eration, which corresponds to a network of 367 nodes. For
p=0.01, the probability of global connection is negligible up
the 50th generation, i.e., a network with more than 3.5
X 10% nodes. In the first generations, while global connec-
tivity is negligible, Y networks appear most likely when two
V networks are put together by chance. Due to the symmetry
of the problem, there are three ways in which this can hap-
pen, and we can therefore approximate ¥ =~3V?. The conver-
gence to the thermodynamic limit is investigated by approxi-
mating Egs. (2) and (3) to a simpler form by considering
terms only up to the second order in both p and V,

V' =V+40% + p(4V-40V?) + p*(1 - 15V =32V?). (4)

We now define the scaled probability w=3V/p, and the
scaled generation x=pn. Replacing the scaled variables in
Eq. (4), and making the limit p— 0, we get

dw 4

— =3 +4w+ —w?, (5)

dx 3
where we have used 3(V'—V)/p*=dw/dx. With the addi-
tional condition that w(0)=0, we can solve Eq. (5). Identify-
ing w with the scaled probability of global connectivity
P,/p, and restoring our original variables, we arrive at

P, 3pn

w=—= .
p 1-2pn

(6)

The results shown in Fig. 4 confirm the prediction of Eq. (6).

The obtained scaling shows that the critical occupation
fraction, at which global connectivity is reached, approaches
zero as the network grows p.~n~'. However, this is not a
critical exponent in the normal sense. Since the number of
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nodes of an Apollonian network grows exponentially with
the generation, N=3+(3"-1)/2, we have an ultraslow con-
vergence to the thermodynamic limit p,~ In(N)~'. This loga-
rithmic convergence has been previously observed in other
models such as the bootstrap percolation model [21].

We can now investigate the size of the percolating cluster.
Before global connectivity is reached, when one goes from a
generation to the next, typically two clusters from the sub-
networks merge at the hubs. Since the total size grows by a
factor of 3, the mass fraction of the clusters connected to the
hubs changes by a factor of 2/3. After global connectivity is
reached, the mass fraction does not change with generation
since the clusters from all three subnetworks merge into the
percolating cluster. We thus conclude that the average mass
decreases exponentially with the generation up to a point and
then becomes constant, as one can gather from Fig. 3. As a
result, it is possible to estimate the average mass fraction by
finding at which generation the network becomes globally
connected. From Eq. (5) one can see that the probability of
global connectivity grows linearly with the generation and
then crosses over to an exponential growth when w becomes
larger. We then have that the number of generations to reach
global connectivity n, is of the order of 1/p. The mass frac-
tion of the percolation cluster should then be given approxi-
mately by

M~ NP, (7)

where \ is constant. This behavior is confirmed by the results
shown in Fig. 5. There the mass fraction is plotted as func-
tion of 1/p as obtained by iterating Egs. (2) and (A9). We
observe the expected behavior. The value that best adjusts
this decay is A=0.242*+0.002. Also in Fig. 5 we present
results obtained by numerical simulation of the percolation
process in a 14th-generation Apollonian network. The results
are in good agreement and follow the expected behavior pre-
dicted by Eq. (7).

V. CONCLUSIONS

By applying a real-space renormalization-group technique
to the deterministic hierarchical construction of the Apollo-
nian network, we were able to obtain exact iterative equa-
tions to compute the probabilities of global connectivity P,
and mass fraction M of the percolating cluster. These equa-
tions show that for any positive value of the occupation
probability p, this network is always connected in the ther-
modynamic limit, that is, p.— 0. We performed simulations
of the percolation model for this network and compared the
results with those obtained by numerically iterating our
equations, and we found them to be in good agreement. By
approximating the equations to the limit p — 0, we could also
find scaling relations to the critical probability and mass frac-
tion, namely we showed that p.~n~! and M ~exp(-\/p),
with \ being a constant.

The results presented in this paper provide insight into the
problem of percolation on scale-free networks. It is com-
monly found that scale-free networks are robust to failure
[9], meaning that the critical point of percolation gets arbi-
trarily small for large networks. However, in the case of the
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FIG. 5. (Color online) Comparison between analytical and nu-
merical results. The analytical results (blue solid line) are obtained
by iterating Egs. (2) and (A9) for a range of different values of p,
until the threshold ¥=1-10"3 is reached, which is the adopted
convergence criterion. At this point, the mass fraction occupied by
the percolating cluster My reaches a limiting value, as shown in
Figs. 2 and 3. This is the average percolating cluster mass fraction
for the value of p used. The numerical simulation results (dots) are
obtained by applying numerically the percolation model to a 14th
generation Apollonian network (7 174 452 bonds). The average is
calculated over 10 realizations of the model. These two results are
in perfect agreement for sufficiently large values of the probability
p. For small values of p, finite-size effects of the numerical simu-
lation are no longer negligible and the probability y for the exis-
tence of a percolating clusters begins to vanish (red dashed line).
This result shows that the fraction occupied by the percolating clus-
ter goes to zero as In(My) ~—1/p, that is, the critical transition is of
infinite order.

Apollonian network, its hierarchical structure introduces a
number of relevant differences. For instance, although it has
an exponent y=2.56 for the degree distribution, its critical
behavior is quite similar to the marginal case of random net-
works with y=3, where one also finds M ~exp(—\/p). This
is called an essential singularity and is related to the limit in
which M~ p~# with B—oe. Also, the fact that the critical
point approaches zero logarithmically shows us that the ther-
modynamic limit may not be relevant for real hierarchical
networks. These two findings are surprising. If the hierarchi-
cal structure plays a significant role in the system, not only is
the critical condition much larger than what would be ex-
pected from the degree distribution, but also the mass frac-
tion is much smaller. The reason for this result is related to
the fact that the hubs at each scale are bottlenecks through
which the clusters can reach the larger scales. This could be
used as a way to devise efficient strategies to increase the
system robustness.
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APPENDIX

In this appendix, we present the details of our calcula-
tions. To obtain the iterative Egs. (2), we have to find all
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FIG. 6. (Color online) Description of the process to obtain the
iterative equations (2). In particular, we show the deduction of the
iterative equation for the y probability. The graphical symbols rep-
resent how many new connections are added at this iteration (sym-
bols outside the braces) and show the type of subnetwork that is
being merged at this iteration (symbols inside the braces). In each
case the probability of the corresponding event is presented below
the symbol. The probability to obtain a ¥ network was divided into
four different terms. The first term on the right accounts for itera-
tions where three new connections are added. In this case we obtain
a Y network, regardless of the type of subnetworks, i.e., this term
contributes with p3. The second term, proportional to 3p*(1—p),
accounts for iterations where only two new connections are added.
In our pictorial example, we imagine that these connections link the
two hubs in the bottom with the hub on top being yet isolated. In
this case, to obtain a Y network, the top hub needs to be connected
to the rest by the subnetworks. There are two ways in which this
can happen, namely either the network on the left connects the hub,
and it does not matter what kind of network we have on the right, or
the network on the right does not connect the hub, while the one on
the left does. The probability for one of these events to happen is
represented inside the braces. The other two terms are obtained with
similar reasoning.

possible combinations for the three subnetworks being
merged. Each subnetwork can be either a ¥ network, one of
the three symmetrically identical V networks, or an S net-
work, resulting in 53 different combinations. We must also
account for the possible combinations for the three bonds
included in the process of going from one generation to the
next, as explained in Fig. 1. Since each of the three bonds
can be present or not, there are a total of 53X 23=1000 dif-
ferent combinations for the iterative process. By identifying
which ones results in Y, V, or S networks in the next genera-
tion, we can formulate our iterative equation for the renor-
malization process. At first this may appear as a rather diffi-
cult task, but taking advantage of the symmetry of the
network can make it simpler. In Fig. 6, we present a graphi-
cal representation of the way we obtained the iterative equa-
tion for the probability Y. For other self-similar networks, the
same reasoning can be used to derive the iterative equations.
This process gets increasingly more complex if one consid-
ers that more than three hubs connect the network at different
generations. In such cases, one may use a computer to search
all the different ways in which the hubs can be connected or
disconnected, thus obtaining the renormalization-group rela-
tions. We did that in our case in order to get an alternative
confirmation of our equations.

After collecting all terms contributing to Y', V', and §’,
we obtain the expressions for My, M, My, and M. For
instance, if an S subnetwork is merged with two other sub-
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FIG. 7. The auxiliary variable for the computation of the mass
fractions. In this picture, the gray area corresponds to a cluster
being formed when we go from one generation to the following in
the Apollonian network. This cluster can represent a Y, V, or S
network, depending on the number of hubs it connects. The empty
circles are the three hubs of a subnetwork, which can alsobe a ¥, V,
or S network (first, second, and third columns, respectively). In
order to compute the contribution of the subnetwork to the mass of
the cluster forming in the next generation, we introduce auxiliary
variables where the index indicates how many of the hubs of the
subnetwork are attached to the forming cluster. Depending on the
case, a different mass is added to the cluster, as indicated.

networks to form a Y network, there are two possibilities:
either the three clusters of the S subnetwork are connected at
the Y network or just two. To account for these two cases, we
introduce new auxiliary variables s, and s3 indicating that
two or three hubs of the subnetwork are connected to the
particular cluster for which we are computing the mass frac-
tion at the following generation. We have then s3, s,, 51, and
sy as aliases to S; and vs, v,, vy, and v, as aliases to V. In
each case, the subscript indicates the number of hubs con-
nected to the cluster for which we are computing the mass
fraction at the following generation. In the case of the Y
networks, either three or none of the hubs are connected to a
cluster at the following generation, thus we have y; and y, as
aliases to Y. In Fig. 7, we present a graphical representation
of these auxiliary variables. After these contributions have
been taken into account, one should set these variables to
their appropriate values according to the following defini-
tions:

S0551,52,83 — 3,
Vo U1,Up, U3 — V,

Vosyz — Y. (A1)

Under these conventions, Eqgs. (3) are rewritten as

Y3=(y;+3v;+53)°,
Y, = (y3+ 303+ 53)(y3 + 203) (v3 + 4v3 + 253),

Yy =y;5(y;+3v3+ 53)2 +03(y3+ 203)(By; + 1005 + 4s3)

+53(y3 + 203)2,
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Yo = y3ly3(vs3 + 903 + 353) + 1203205 + 53)] + 305 + 35,)
+ 1403, (A2)
and

Vo= (va+50)(y3 + 305+ 53),
Vi=0y(v; + )%
Vi'= (734 203) (2 + 52)7 + 02(v3 + 53) (V2 + 52),
Vo= 0353 + 0503302 + 455) + y3(vy + 55)> + 05 (v +5)2,

(A3)

where V| has been split as V,;=V|+V]". The reaon for sepa-
rating these two contributions is to account later for the extra
connection added at this generation that may or may not be
part of the growing cluster. Since we also need to compute
the masses M, and Mg, the equations for the probabilities S
and U need to be written in terms of the new variables,

U= (v, +5)7,
UI] = U](U +S2)2,
U= (99 + 200)(v) + 57)% + 01 (01 + 51) (Vg + 50).

UO = U%SO + UQUI(U2 + 2S2) + zvll)o(l)l + Sl)

+ (yo+ o) (v + 5%, (A4)
S =510y + )%
S111= s1(v1+51) (Vg + 50),
So=5051(201 + 51) + 5102(V2 + 25,) + 2005, (V] + 57).
(AS)

Again, the terms UI, UH, SII, SIII are introduced to account for
the cases in which the added connection attaches or not to
the cluster. Using Eq. (A1), one returns to the expressions of
Eq. (2), and also recovers the relations U=V and S=1-Y
-V.

After rewriting the equations for the probabilities, one can
proceed with the calculation of the iterative equations for the
mass fractions. Deriving with respect to the auxiliary vari-
ables and multiplying by the appropriate mass, we obtain the
correct contribution of each term to the mass fraction. With

that purpose, we define the set of functions X as

Jd Jd
X= M—+v(M +M)—+vM—+vM—
Y dys o v,
J Jd J
+3sM,— +2sM,— +sM,— | X, (A6)
(953 (95'2 (95]

where X stands for any of the functions defined in Eqgs.
(A2)-(A5).

One last point to be taken into consideration is the relative
weight of the bonds or nodes in the next generation. The
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number of bonds in an nth generation network W, can be
easily calculated as

3
W,,=§(3”— 1), (A7)
from which we obtain
1 2/3
a= = s
Wn+l 3n+1 -1
W, 3"—1
b= =-7 s (A8)
W, 37 -1

where a and b are the relative weight of each of the three
new extra bonds added and the weight of each of the three
nth generation networks, respectively. As a test, one can
verify that 3(a+b)=1. Putting everything together, we obtain
the exact expressions for My, My, M, and Mg,

Y'My=p*My, +3p°qMy, +3pg*My +q’My,,
V'My=p*qMy, + pg*My, +q’My,,
V'My=p*qMy, + pg*My +¢’My,,

S'Mg=pq*Ms, +q’Ms,, (A9)

where the mass contributions are given by

My, =(3aY;+bY3), My =(2aY,+bY,),
Myl:(aY1+bI71), My0=(b1_’0),
Mv2=(261V2+b‘72), MV11=(b‘7[1),
Myn=(aVi+bV}), My =(bVy),

My, = (2aU, + bV,), My = (aU} +bVY),

MUIII = (“7111), MU0= (b‘_/o),
Mg =(aS} +bS5)),  Mgu=(bS)),

M;, = (bSy), (A10)

with le =1‘4VI1 +2MVIII, MUl =MUII +2MUIII, and Msl =MSII
+2M st After performing the derivatives, and eliminating the
auxiliary variables, we finally obtain

PHYSICAL REVIEW E 78, 066112 (2008)
My3=3aY3+3b{YMy+3V(MU+Mv) +3SMs},

My, =2aY,+b{YMy[3 = (V+8)*]+ V(My + M)
X[9=2(V+S)=3(V+95)?]+3SM(4— (Y +4V
+25)%},

My =aY, + D{YM[1+2(Y+2V)(1 + V+S)]+ V(M + M)
X[Y(O-V+58)+12V(2-V)]
+3SM2Y +4V(Y +2V) + 3(Y +2V)?]},

My, =3b{YM)[Y(2-Y) +4V(2V + )]+ VMY (4 - Y
+4V)+ V(15V+28) ]+ VM [Y(4 - Y +4V) + 14V?]
+SM[3Y?+ 12YV + 2V?]}, (A11)

My, =2a(V+ S)? + b{YM,[(V+ 8)?]1+ VM ,[3(V + 5)*]
+ VM 2(V+S8) +3(V+5)2]+ SMJ4(V +S)
+3(V+ 9},

My =2a(Y +3V)(V + S)2+ b{YM[2(V + S)*] + VM [4(2V
+S)(V+ 8]+ VM [(T-3Y-2V)(V+S)]
+ SMJ4QY +TV)(V+S)]},

My, =b{YM,[(V+ S)2 ]+ VM [V(5V +6S)] + VM [2Y(V
+8) +2V(5V+68) + S?]+ SM4Y(V+S) + V(13V
+25)1, (A12)

My, =2a(V+8)* + b{VM[2(V + )] + SM2(V+ )1},

My, =aV(V+S)*+b{VM\[2V(V + )]+ VM [(V+5)?
+2(2-8)]+SMJ4V(V+S)+2Q2Y +5V)]},

My, = b{VM[2V(V + S)]+ VM [V(7V +8S) +2Y(V+S)]

+SM2V(4V+S8) +2Y(V+S)]}, (A13)

Mg =aS(V+ S)2 + b{V(My+ M )[2S(V+5)]
+SM3(V+3S)(V+9S)]}

M, =b{V(My+M)[2S(V + S)]+ SM 3 V2 + 12VS + 287
(A14)
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